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Abstract: In researching the fluid elastic characteristics of the rudder system, it is found that the results of rudder sys-

tem flutter characteristics based on the binary linear flutter wing model are consistent compared with the literature sim-

ulation data. The rudder system flutter influence laws of such linear parameters as frequency ratio, gravity center and

torsional rigidity are obtained by calculating using the aforementioned model. In addition, combined with calculation

method of the two degrees of freedom binary wing hydrodynamic for the arbitrary time domain, the rudder system non-

linear flutter phenomenon is calculated, and the influence of nonlinear flutter caused by the transmission interval is ana-

lyzed. The research results provide a fundamental analysis method for the fluid elastic characteristics of rudder sys-

tems. The results can also support the anti—flutter design of rudder systems.
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0 Introduction

In common calculations of fluid elasticity, binary
wing is a hypothetical rudder blade, a simplified sim-
ulation of the true elastic one, and is generally used
for principle analysis and verification of aeroelastic

= Under this assumption,

or fluid elastic problems
the airfoils in all sections along the spanwise direc-
tion are the same, while the rudder blades are as-
sumed to be absolutely rigid. Bending and torsional
deformations of the rudder blades are used for the
simulation of the heaving and pitching motion of the
two degrees of freedom wing, respectively”™. In gen-
eral, these theories above can be used to estimate the
rudder surface's flow stability of the underwater vehi-
cles” . Based on the aforementioned researches and
Theodorsen theory, taking the flutter characteristics
of the underware vehicle's rudder system into full ac-
count, this study adopts the hydrodynamic calcula-
tion method for the two degrees of freedom binary
wing in arbitrary time domain to calculate the rudder

surface's nonlinear fluid elasticity. Besides, it also is
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used to investigate the effects of generalized structur-
al nonlinear factors consisting of the link mechanism
interval and bearing friction of rudder system as well
as the coupling effects between the rudder system
and the control system on flutters. This method is
easy for engineering fulfillment and can provide an
effective way for nonlinear fluid elasticity analysis of
the rudder system. Firstly, the linear and nonlinear
models of binary flutters should be established,
based on which, the calculation and analysis of lin-
ear flutters are carried out. Then, the calculation re-
sult is supposed to be compared with that in referenc-
es. After the nonlinear flutters being calculated and
analyzed further, influence laws of such system pa-

rameters on flutters are obtained.

1 Linear and nonlinear calculating
models of binary flutters
According to the rudder system model shown in

Fig. 1(a), a simplified model of the wing structure is

obtained as shown in Fig. 1(b), as well as the simpli-
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fied models of the linear and nonlinear flutters of the
two degrees of freedom wing (Fig. 1(c) and Fig. 1(d)).
The wing connects to the structure through the axial
bearing, and in the figures: v is the velocity of the
wing relative to the water flow, m/s; b is a half of
wing's chord length; x, is the distance from the
mass center to the elastic shaft; a is the pitching ro-
tation angle around the stiffness center. The opera-
tion of the overall system from the steering engine to
the control surface is to provide a torque to the rud-
der so that it can swing up and down. Therefore, the
entire control system is simplified as a torsional
spring for calculation. Through three—dimensional
geometric software, location of the mass center and
moment of inertia of the rudder blade (including the
water inside) are obtained. Then through statics anal-
ysis, the position of the elastic shaft of the rudder
blade can be found, and the equivalent bending rigid-
ity and equivalent torsional rigidity of rudder blade
as well as the equivalent torsional spring rigidity of

the control system are calculated.

(a) Rudder system model

(b) Simplified model of rudder system
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(d) Nonlinear flutter model of two degrees of freedom wing

Fig.1 Simplified model of two binary linear and nonlinear flutter

2 Calculation and analysis of lin—
ear flutters of binary wing

2.1 Calculation model

Differential equations of motion of binary wing's
linear flutters are:
mh +mx,é +k,h=—L(t) (1)
mx, h+1G+k,a=T,(t) (2)
where m is the mass of the wing; k, is the linear
spring rigidity; k, is the torsional spring rigidity; h
is the heaving displacement of stiffness center; [, is
the sailplane's moment of inertia to the stiffness cen-
ter in per unit span; L is the lift; 7 is the pitching
moment; and ¢ is time.
The lift L and pitching moment T, of the binary
wing in simple harmonic motion can be written as:

L= npabz[ﬁ + V6 — bd(i] +2mp vbC (k)

[va+}'z+b(%—é)d} (3)
T, = npab2|:bﬁii - vb(% - d)o'c - bz(% + azj&} +

2npavb2(d + %)C(k)[\/a +h+ b(% - d)d} (4)
where p, is the fluid density; C(k) is the damping
coefficient, and the non—circulation part unrelated to
C(k) describes the inertial effect; and @ is the dis-

tance from the elastic shaft to the center.

When v is equal to the flutter velocity v, . the

wing is in simple harmonic motion, namely,

iwt T - o« e .
“" where, h and @ are initial dis-

h=he" |, a=ae
placement and angle respectively. The correspond-
ing hydrodynamic force F and the pitching moment
T, are also in simple harmonic motion, that is:
F=Fe” T, =T, .

Nondimensionalization is conducted on the simul-
taneous equation of Eq. (1) and Eq. (2) and then
v—g method can be adopted to analyze the flutter.
Assuming the structural damping of the rudder sys-
tem is 0, after the introduction of artificial structural
damping, the equation can be rewritten as:

(A(k)+M){h{b}:—(l+§g)x{h{b} (s)
o Q o

where,
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L,=1- i2C(k)%

L1 1+2CH) 2Ck)
=7 3 E
=
Ma:%—i%
ﬂ:npn:bz

Let
Q= a)2/a)a2 ,R’= a)hz/a)a2 , k=wb/v

where 7, is the dimensionless turning radius of the
wing around the elastic shaft; a is the dimensionless
quantity of the distance from the elastic shaft to the
center; Q is the ratio of the frequency of simple har-
monic motion to natural torsional frequency; R is
the ratio of natural heaving frequency to natural tor-
sional frequency; @ is the frequency of the wing in
simple harmonic motion; @, is the natural torsional
frequency of the system; w, is the natural heaving
frequency of the system; and & is the reduced fre-
quency.

Then, the eigenvalue of Eq. (5) can be written as

1+1
)“:( 2g) =Age Hidyy, (6)
Thus
2 b
W=t gl o O (7)
[ Age e

When the flutter analysis is done by v—g meth-
od, firstly, a certain fluid density p, is given and the
values of a set of reduced frequency k are preset;
then the complex eigenvalues above are calculated
from the maximum £k, and the corresponding struc-
tural damping coefficient g, frequency @ and ve-
locity v are obtained; finally, the values of g, ,v
are calculated when & is decreased by a certain
step length. The results can be drawn as v—g or
v—@ curve after repeated calculations, and when
the calculated g is equal to the true structural
damping value g, of wing, the corresponding v is
its critical flutter velocity v;. It should be noted
that, the true structural damping coefficient of wing
is usually assumed to be 0 during the implementa-

tion of the v—g method because it is difficult to be

measured; when the calculated value of g just equals
to 0, the corresponding v is the critical flutter veloc-
ity v; of the wing. However, the flutter velocity ob-

tained by this method is conservative.

2.2 Calculation results

2.2.1 Calculation verification

A large number of fluid elastic experiments and
simulations on the control surfaces of ships and un-
derwater vehicles have been done in the US navy Da-
vid Taylor towing tank, and a lot of experimental da-
ta have been accumulated. According to the linear
flutter calculation method in section 2.1, with the pa-
rameters in Reference [11], the corresponding rela-

tions of v—g are calculated when the distances x,

from the mass center to the elastic shaft in group A
and group B are different, as shown in Fig. 2. Com-
pared with the calculation results in the reference,
the two are consistent with each other, which sug-
gests that the linear flutter calculation method used

in this paper is correct and Theodorsen theory can be
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Fig.2 Calculation results of linear flutter in comparison with

that of Reference [ 11]
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effectively used for the fluid elasticity simulation. As
for the error in comparison, the main reason is the

difference in model processing after analysis.

2.2.2 Calculation results and analysis of the in—
fluences of linear parameters on the flut-
ter of rudder system

After correctness of the flutter calculation method
above being verified, impacts of the linear parame-
ters such as the frequency ratio R, and the mass ra-
tio ¢ in the rudder system on flutters are calculated
and analyzed.

With binary linear flutter model employed in the
rudder system, Fig. 3 shows the use of v—g method
to calculate the impact trend of part of the linear pa-
rameters on V. The dimensionless turning radius of
r,=0.583;
and a=-0.48. When the frequency ratio

rudder blade to the stiffness center
u=2;
R, = 1, v, is close to be the minimum; if the natu-
ral torsional frequency , of the system is increased
while R kept unchanged, v, will increase in di-

; when R <1,

rect proportion to ,; if w, is in-
creased singly, v, value will increase accordingly; if
the natural heaving frequency ®, of the system is in-
creased, v, will decrease when R_<1. It can be
seen that the main mode of flutter under this combi-
nation of parameters is torsional mode, that is, the
torsion branch becomes unstable first. Therefore, in-
creasing the torsional rigidity can greatly increase
the v, value. In addition, antedisplacement of the
dimensionless quantity x, of the mass center rela-
tive to the elastic shaft can increase the v, value,
and the mass center can be advanced by increasing

the balance weight at the leading edge of the wing.
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Fig.3 Influence of frequency ratio R, and x,

on {lutter velocity

Fig. 4 shows the impact trend of mass ratio x4 on

ve under different x,, where r,=0.583; R =

F

0.5499;

has a minimum value

and a=-0.48. In the figure, each curve
. In a specific structure,
the mass m and ®, do not change. When u<pu,_,
Ve increases with a very large slope when 4 —0,
which indicates that there is no danger of flutter
when the rudder moves in high density medium;
when u>u . low density medium will increase v,

which is opposite to the result obtained when u<u,,
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Fig.4 Influence of mass ratio u on flutter velocity

3 Calculation and analysis of non—
linear flutters of binary wing

3.1 Calculation model

The motion differential equations of the lift and
moment of the wing's arbitrary motion as well as the
motion differential equation of nonlinear flutter of

the binary wing are:
L= npabz[i'z' +va — bﬁ(i] +

A «d o A
2npavb[Q3/4<0)¢w(r) P [ cr)daj

(8)
T, =mp, b

[bah - vb(— - a)a b j + 21tpavb %)

Q3/4() ( _0_\ o
(Qm(owwK 7 j bo\® )dj (9)

mﬁ+mxad+chh+F(h):—L(t) (10)
mx h+my, i+ c,a+Ga)="T,(1) (11)
where Q,, is the downwash of the wing section's
3/4 chord point; %@ is Wanger function; ¢, and

¢, are the heaving and pitching damping coefficients
of the wing section, respectively; F(h) is the inter-
val nonlinearity in the spring force; G(a) is the inter-

val nonlinearity of the torsional spring's torque.
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F(h) and G(a) are the functions of 4 and a, re-
spectively, and the curves are shown in Fig. 5, where
h is displacement interval and a is the angle inter-
val. Specific expressions are shown in Eq. (12) and

Eq. (13).

1 F(h), -G(o)(+)

~hg, —o,

h. o, h(z).—a(D)(+)

Soft Spltifl,g"' Hard spring  }

Fig.5 Schematic of interval nonlinearity

k,(h—h)+k,(h—h), h>h,

F(h)= 0 ,~h <h<h, (12)
k(h+h)+k,(h+h), h<—h,
ka(a—as)+l€a(a—as)3, a>a,

G(a)= 0 ,—a,<a<o, (13)
ka(a+as)+1€a(a+as)3, a<-—a,

After the introduction of dimensionless parame-

ters, the parameters can be rewritten as:

E=hib,w, = Jkim, o= [k/my}),

a"):a)g/a)a, y,=v,/b,x,=x,1b,

£=e,2 !_mkh), E=c 2 ’myaz'ka) (14)

R.=kb’/k,. R, =k, Ik, ji=m/(mp b7).

Vion = v/(a)ab),; =vt/b
Let

fszgy n,=— (15)

where @. and w, are the natural frequencies of
coupling—free heaving and pitching, respectively; @
is the frequency ratio; X, is the dimensionless dis-
tance from the mass center of the wing to the elastic
shaft; ¢: and ¢, are damping ratios of the heaving

is the di-

and pitching movements, respectively; v

mensionless inflow velocity; 7 is the dimensionless
time; R, is the dimensionless quantity of nonlinear

is the dimension-

heaving stiffness coefficient; R,

less quantity of nonlinear pitching stiffness coeffi-
cient; ¢ is the dimensionless quantity of the heav-
ing interval; #, is the dimensionless quantity of the
pitching interval.

The following new state variables are introduced:

o, (;) = J.: eibl(;ia)a(a)da

(A“_ I; ~b,(t~0)
w,ti=|¢e a(o)do
o (16)
o, (;) = L efb'(zia)g“(a)da

~by(t-0)

é(o)do

o (i)
So, Eq. (10)-Eq. (11) can be rewritten as follow:
cof+ c,d+ czf+ 6+ +cy S+esotcio) +
C,0, + Cyy +Com, + o, =f(;) (17)
dé+di+d,évda+rd,Evdn, +dga+rdo, +

dow, +do, +d,o, +d,g,° =g@ (18)

where,
1
Cy= 1 "r;
c,=X,- a
u

v

non

¢, =289 +%(1 —A,-A)

_1+2(0.5-a)(1-4,-4,)

2
Cyy = _(Albl +Azbz)

u
€s= %[l — A4, = A,]+(0.5-a)(4,b, +4,b,)
c = %Albl[l ~(0.5-a)b,]

¢, = %Azbz[l ~(0.5-a)b,]

2
CS :—;Alblz
cy=—24,b)
_ 2
@
€10 :Ri(mj
i -
do =—2" L_Z 2
Va MY,
2
P
8u7,
(1+2a)1-4,-4,)
d,=- —
MY,
d}:ZéfaLJr 1 —2‘27 _
Vhon 2#3744
(1-2a)(1 +2a)1 -4, - 4,)

23,
(1+2a)(4,b, +4,b))
u,’

d,
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1
d,= —
(1+2a)(1-4,-4,)
55 — -
uy,
(1-2a)(1+2a)(A4,b,+4,b,)
2uj,’
(1+2a)A4,b,’
1y,
1
le :Ra v 2

non

The f{ ) and g( ) at the right sides of Eq. (17)
and Eq. (18) are respectively:
£(7)= 2105 -2a@+0)-
{A,ble_b'? +A2b2e_bz?] (19)

()
gU_

Eq. (11) of ﬂuld elasticity are written in

(7) (20)

Eq. (8) -

the following matrix form:

il ) pal )+ kgl ?) on
Mz +Dq 7+ Kaiz)+ KKg,(7)+

q,
(Nt ol e (2
(U]*G‘”U 1) (21)

off)- o) off) o) ()]

Using the derivative Eq. (22) containing paramet-
ric variable integrals, the state vector w( ) is found
to satisfy differential Eq. (23).

FO=[ e

x,()
aFay=[" e 100 .2

dx,(y)/dy —f(x,(»), y)dx,(»)/dy

oD (1) ()
U_E wU+E 197 (23)

where
-b, 0 0 0
0 -b, 0 O
E =

@ 0 0 -b O
0 0 0 -b,

01

E - 01

7110

10

According to Eq. (22) and Eq. (23), the dimension-
less fluid elasticity equation of the two degrees of
freedom binary nonlinear wing in the state space can

be obtained and illustrated as follow:

O2><1 O2><l
_ () (W dop ()
M~ F(qr]\ )j M- KKq\) + \)
0, (U

3.2 Calculation and analysis

Fig. 6 shows the response of fluid elasticity in the
case that the heaving interval ¢ =0.005 and the
pitching interval 5, =0. It can be seen from the fig-
ure that self-excited vibration with an equal ampli-
tude occurs, that is, limit cycle oscillation. The exis-
tence of interval leads to a certain degree of freedom
in the system difficult to control, and excites water
noise, therefore, controlling interval and other nonlin-
ear links are also essential to the control of wing vi-

bration.

4 Conclusions

In this paper, the flutter law of linear rudder sys-
tem is calculated and analyzed based on a binary
wing linear flutter model, whose results are in agree-
ment with the experimental data in Reference [11].
The nonlinear flutter phenomenon of the rudder sys-
tem with interval is simulated and calculated by the
hydrodynamic calculation method for two degrees of
freedom binary wing in arbitrary time domain. The
calculation results show that the smaller the distance
from the mass center to the elastic shaft is, the more
the flutter velocity is improved, and adding balance
weight to the rudder blade is usually used to advance

the mass center. The smaller the value of dimension-
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Fig.6  Calculation results of interval nonlinearity

less density is, the more difficult it is for flutters to
occur, that is, reducing the mass of the rudder blade
is conducive to improve the flutter velocity. At the
same time, it is also found that increasing the torsion-
al rigidity of the rudder shaft has the same effect. Be-
cause of the nonlinear parameters in actual rudder
system, such as interval and friction, the nonlinear
simulation and calculation of interval in the system
are needed. The existence of interval may result in
the un—damped vibration response in the system,
that is, limit cycle oscillation, which does not cause
damage to the rudder blade structure, but will stimu-
late the water noise and other problems. In conclu-
sion, it is of great significance to simulate and ana-
lyze the flutter of rudder system comprehensively.
The analysis of the flutter of rudder system in this pa-
per can provide basic research methods and referenc-

es for this kind of simulation.
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