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0 Introduction

In common calculations of fluid elasticity, binary
wing is a hypothetical rudder blade, a simplified sim⁃
ulation of the true elastic one, and is generally used
for principle analysis and verification of aeroelastic
or fluid elastic problems[1-3]. Under this assumption,
the airfoils in all sections along the spanwise direc⁃
tion are the same, while the rudder blades are as⁃
sumed to be absolutely rigid. Bending and torsional
deformations of the rudder blades are used for the
simulation of the heaving and pitching motion of the
two degrees of freedom wing, respectively[4-5]. In gen⁃
eral, these theories above can be used to estimate the
rudder surface's flow stability of the underwater vehi⁃
cles[6-10]. Based on the aforementioned researches and
Theodorsen theory, taking the flutter characteristics
of the underware vehicle's rudder system into full ac⁃
count, this study adopts the hydrodynamic calcula⁃
tion method for the two degrees of freedom binary
wing in arbitrary time domain to calculate the rudder
surface's nonlinear fluid elasticity. Besides, it also is

used to investigate the effects of generalized structur⁃
al nonlinear factors consisting of the link mechanism
interval and bearing friction of rudder system as well
as the coupling effects between the rudder system
and the control system on flutters. This method is
easy for engineering fulfillment and can provide an
effective way for nonlinear fluid elasticity analysis of
the rudder system. Firstly, the linear and nonlinear
models of binary flutters should be established,
based on which, the calculation and analysis of lin⁃
ear flutters are carried out. Then, the calculation re⁃
sult is supposed to be compared with that in referenc⁃
es. After the nonlinear flutters being calculated and
analyzed further, influence laws of such system pa⁃
rameters on flutters are obtained.
1 Linear and nonlinear calculating

models of binary flutters

According to the rudder system model shown in
Fig. 1(a), a simplified model of the wing structure is
obtained as shown in Fig. 1(b), as well as the simpli⁃
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fied models of the linear and nonlinear flutters of the
two degrees of freedom wing (Fig. 1(c) and Fig. 1(d)).
The wing connects to the structure through the axial
bearing, and in the figures: v is the velocity of the
wing relative to the water flow, m/s; b is a half of
wing's chord length; xa is the distance from the
mass center to the elastic shaft; α is the pitching ro⁃
tation angle around the stiffness center. The opera⁃
tion of the overall system from the steering engine to
the control surface is to provide a torque to the rud⁃
der so that it can swing up and down. Therefore, the
entire control system is simplified as a torsional
spring for calculation. Through three-dimensional
geometric software, location of the mass center and
moment of inertia of the rudder blade (including the
water inside) are obtained. Then through statics anal⁃
ysis, the position of the elastic shaft of the rudder
blade can be found, and the equivalent bending rigid⁃
ity and equivalent torsional rigidity of rudder blade
as well as the equivalent torsional spring rigidity of
the control system are calculated.

2 Calculation and analysis of lin-
ear flutters of binary wing

2.1 Calculation model

Differential equations of motion of binary wing's
linear flutters are:

mḧ + mxa α̈ + khh = -L( )t （1）
mxa ḧ + Iα α̈ + kαα = Tα( )t （2）

where m is the mass of the wing; kh is the linear
spring rigidity; kα is the torsional spring rigidity; h
is the heaving displacement of stiffness center; Iα is
the sailplane's moment of inertia to the stiffness cen⁃
ter in per unit span; L is the lift; Tα is the pitching
moment; and t is time.

The lift L and pitching moment Tα of the binary
wing in simple harmonic motion can be written as:

L = πρab
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where ρa is the fluid density; C ( )k is the damping
coefficient, and the non-circulation part unrelated to
C ( )k describes the inertial effect; and ā is the dis⁃
tance from the elastic shaft to the center.

When v is equal to the flutter velocity vg , the
wing is in simple harmonic motion, namely,
h = h̄eiωt ，α = ᾱeiωt , where, h̄ and ᾱ are initial dis⁃
placement and angle respectively. The correspond⁃
ing hydrodynamic force F and the pitching moment
Tα are also in simple harmonic motion, that is:
F = F̄eiωt ，Tα = T̄αe

iωt .
Nondimensionalization is conducted on the simul⁃

taneous equation of Eq. (1) and Eq. (2) and then
v - g method can be adopted to analyze the flutter.
Assuming the structural damping of the rudder sys⁃
tem is 0, after the introduction of artificial structural
damping, the equation can be rewritten as:
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（a）Rudder system model

（b）Simplified model of rudder system

（d）Nonlinear flutter model of two degrees of freedom wing
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where γ̄a is the dimensionless turning radius of the
wing around the elastic shaft; a is the dimensionless
quantity of the distance from the elastic shaft to the
center; Ω is the ratio of the frequency of simple har⁃
monic motion to natural torsional frequency; Rω is
the ratio of natural heaving frequency to natural tor⁃
sional frequency; ω is the frequency of the wing in
simple harmonic motion; ωα is the natural torsional
frequency of the system; ωh is the natural heaving
frequency of the system; and k is the reduced fre⁃
quency.

Then, the eigenvalue of Eq. (5) can be written as
λ =

( )1 + ig

Ω2
= λRe + iλ Im （6）

Thus
ω =

ωα

λRe

，g =
λ Im

λRe

，v =
ωαb

k λRe

（7）
When the flutter analysis is done by v - g meth⁃

od, firstly, a certain fluid density ρa is given and the
values of a set of reduced frequency k are preset;
then the complex eigenvalues above are calculated
from the maximum k , and the corresponding struc⁃
tural damping coefficient g , frequency ω and ve⁃
locity v are obtained; finally, the values of g , ω , v

are calculated when k is decreased by a certain
step length. The results can be drawn as v - g or
v -ω curve after repeated calculations, and when
the calculated g is equal to the true structural
damping value g0 of wing, the corresponding v is
its critical flutter velocity vF . It should be noted
that, the true structural damping coefficient of wing
is usually assumed to be 0 during the implementa⁃
tion of the v - g method because it is difficult to be

measured; when the calculated value of g just equals
to 0, the corresponding v is the critical flutter veloc⁃
ity vF of the wing. However, the flutter velocity ob⁃
tained by this method is conservative.
2.2 Calculation results

2.2.1 Calculation verification
A large number of fluid elastic experiments and

simulations on the control surfaces of ships and un⁃
derwater vehicles have been done in the US navy Da⁃
vid Taylor towing tank, and a lot of experimental da⁃
ta have been accumulated. According to the linear
flutter calculation method in section 2.1, with the pa⁃
rameters in Reference [11], the corresponding rela⁃
tions of v - g are calculated when the distances xa

from the mass center to the elastic shaft in group A
and group B are different, as shown in Fig. 2. Com⁃
pared with the calculation results in the reference,
the two are consistent with each other, which sug⁃
gests that the linear flutter calculation method used
in this paper is correct and Theodorsen theory can be

（a）Comparison between the simulation result in group A and
calculation result in group A in reference

（b）Comparison between the simulation result in group B and
calculation result in group B in reference

Fig.2 Calculation results of linear flutter in comparison with
that of Reference［11］
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effectively used for the fluid elasticity simulation. As
for the error in comparison, the main reason is the
difference in model processing after analysis.
2.2.2 Calculation results and analysis of the in-

fluences of linear parameters on the flut-
ter of rudder system

After correctness of the flutter calculation method
above being verified, impacts of the linear parame⁃
ters such as the frequency ratio Rω and the mass ra⁃
tio μ in the rudder system on flutters are calculated
and analyzed.

With binary linear flutter model employed in the
rudder system, Fig. 3 shows the use of v - g method
to calculate the impact trend of part of the linear pa⁃
rameters on vF . The dimensionless turning radius of
rudder blade to the stiffness center ra = 0.583 ;
μ = 2 ; and a = -0.48 . When the frequency ratio
Rω ≈ 1, vF is close to be the minimum; if the natu⁃
ral torsional frequency ωα of the system is increased
while Rω kept unchanged, vF will increase in di⁃
rect proportion to ωα ; when Rω < 1 , if ωα is in⁃
creased singly, vF value will increase accordingly; if
the natural heaving frequency ωh of the system is in⁃
creased, vF will decrease when Rω < 1 . It can be
seen that the main mode of flutter under this combi⁃
nation of parameters is torsional mode, that is, the
torsion branch becomes unstable first. Therefore, in⁃
creasing the torsional rigidity can greatly increase
the vF value. In addition, antedisplacement of the
dimensionless quantity xa of the mass center rela⁃
tive to the elastic shaft can increase the vF value,
and the mass center can be advanced by increasing
the balance weight at the leading edge of the wing.

Fig. 4 shows the impact trend of mass ratio μ on
vF under different xa , where ra = 0.583 ; Rω =

0.549 9 ; and a = -0.48 . In the figure, each curve
has a minimum value μm . In a specific structure,
the mass m and ωα do not change. When μ  μm ,
vF increases with a very large slope when μ® 0 ,
which indicates that there is no danger of flutter
when the rudder moves in high density medium;
when μ > μm , low density medium will increase vF ,
which is opposite to the result obtained when μ  μm .

3 Calculation and analysis of non-
linear flutters of binary wing

3.1 Calculation model

The motion differential equations of the lift and
moment of the wing's arbitrary motion as well as the
motion differential equation of nonlinear flutter of
the binary wing are:

L = πρab2[ ]ḧ + vα̇ - bāα̈ +
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mḧ + mxa α̈ + chḣ + F(h) = -L( )t （10）
mxa ḧ + mγa

2 α̈ + cα α̇ + G(α) = Tα( )t （11）
where Q3/4 is the downwash of the wing section's
3/4 chord point; ϕωæè ö

ø
τ
Ù is Wanger function; ch and

cα are the heaving and pitching damping coefficients
of the wing section, respectively; F(h) is the inter⁃
val nonlinearity in the spring force; G(α) is the inter⁃
val nonlinearity of the torsional spring's torque.

Fig.3 Influence of frequency ratio Rω and xα
on flutter velocity
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F(h) and G(α) are the functions of h and α , re⁃
spectively, and the curves are shown in Fig. 5, where
hs is displacement interval and αs is the angle inter⁃
val. Specific expressions are shown in Eq. (12) and
Eq. (13).
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After the introduction of dimensionless parame⁃
ters, the parameters can be rewritten as:
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where ωξ and ωα are the natural frequencies of
coupling-free heaving and pitching, respectively; ω̄
is the frequency ratio; x̄a is the dimensionless dis⁃
tance from the mass center of the wing to the elastic
shaft; ξξ and ξα are damping ratios of the heaving
and pitching movements, respectively; vnon is the di⁃
mensionless inflow velocity; τ̄ is the dimensionless
time; Rξ is the dimensionless quantity of nonlinear
heaving stiffness coefficient; Rα is the dimension⁃
less quantity of nonlinear pitching stiffness coeffi⁃
cient; ξs is the dimensionless quantity of the heav⁃
ing interval; ηα is the dimensionless quantity of the
pitching interval.

The following new state variables are introduced:
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So, Eq. (10)-Eq. (11) can be rewritten as follow:
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c6 =
2
μ

A1b1[1 - (0.5 - ā)b1]
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Fig.5 Schematic of interval nonlinearity
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2

μγ̄a
2

d10 = Rα
1

vnon
2

The f æ
è
ö
ø
τ
Ù and gæ

è
ö
ø
τ
Ù at the right sides of Eq. (17)

and Eq. (18) are respectively:
f æ
è
ö
ø
τ
Ù
= 2
μ
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Eq. (8)–Eq. (11) of fluid elasticity are written in

the following matrix form:
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According to Eq. (22) and Eq. (23), the dimension⁃
less fluid elasticity equation of the two degrees of
freedom binary nonlinear wing in the state space can
be obtained and illustrated as follow:
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3.2 Calculation and analysis

Fig. 6 shows the response of fluid elasticity in the
case that the heaving interval ξs = 0.005 and the
pitching interval ηα = 0 . It can be seen from the fig⁃
ure that self-excited vibration with an equal ampli⁃
tude occurs, that is, limit cycle oscillation. The exis⁃
tence of interval leads to a certain degree of freedom
in the system difficult to control, and excites water
noise, therefore, controlling interval and other nonlin⁃
ear links are also essential to the control of wing vi⁃
bration.
4 Conclusions

In this paper, the flutter law of linear rudder sys⁃
tem is calculated and analyzed based on a binary
wing linear flutter model, whose results are in agree⁃
ment with the experimental data in Reference [11].
The nonlinear flutter phenomenon of the rudder sys⁃
tem with interval is simulated and calculated by the
hydrodynamic calculation method for two degrees of
freedom binary wing in arbitrary time domain. The
calculation results show that the smaller the distance
from the mass center to the elastic shaft is, the more
the flutter velocity is improved, and adding balance
weight to the rudder blade is usually used to advance
the mass center. The smaller the value of dimension⁃
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less density is, the more difficult it is for flutters to
occur, that is, reducing the mass of the rudder blade
is conducive to improve the flutter velocity. At the
same time, it is also found that increasing the torsion⁃
al rigidity of the rudder shaft has the same effect. Be⁃
cause of the nonlinear parameters in actual rudder
system, such as interval and friction, the nonlinear
simulation and calculation of interval in the system
are needed. The existence of interval may result in
the un-damped vibration response in the system,
that is, limit cycle oscillation, which does not cause
damage to the rudder blade structure, but will stimu⁃
late the water noise and other problems. In conclu⁃
sion, it is of great significance to simulate and ana⁃
lyze the flutter of rudder system comprehensively.
The analysis of the flutter of rudder system in this pa⁃
per can provide basic research methods and referenc⁃
es for this kind of simulation.
References
［1］ FORSCHING H W. 气动弹性力学原理［M］. SHEN

Keyang，translated. Shanghai：Shanghai Scientific and
Technological Literature Press，1982（in Chinese）.

［2］ THEODORSEN T. General theory of aerodynamic in⁃
stability and the mechanism of flutter：TR-496［R］.
［S.l.］：National Advisory Committee for Aeronautics
（NACA），1935.

［3］ THEODORSEN T，GARRICK I E. Mechanism of flut⁃
ter：a theoretical and experimental investigation of the
flutter problem TR-685［R］.［S.l.］：National Advisory
Committee for Aeronautics（NACA），1938.

［4］ DOWELL E H，CURTIS H C，Jr，SISTO F. A modern
course in aeroelasticity［M］. CHEN Wenjun，YIN Ch⁃
uanjia，translated. Beijing：China Aerospace Press，
1991（in Chinese）.

［5］ WRIGHT J R，COOPER J E. Introduction to aircraft
aeroelasticity and loads［M］. New York：John Wiley &
Sons Ltd，2008.

［6］ CHU Yiqing，LI Cuiying. 非线性振动分析［M］. Bei⁃
jing：Beijing Institute of Technology Press，1996（in
Chinese）.

［7］ TSIEN H S.The Poincare-lighthill-kuo method［J］. Ad⁃
van Appl Mechan，1956，4：281-349.

［8］ LIM C W，WU B S. A new analytical approach to the
Duffing-harmonic oscillator［J］.Phys Lett：A，2003，
311（4/5）：365-373.

［9］ LV Hexiang，ZHU Jufen，MA Liying. Discussion of an⁃
alysing of geometric non-linear beams with large rota⁃
tions［J］.Chinese Journal of Computational Mechanics，
1995，12（4）：485-490（in Chinese）.

［10］ YIN Youquan. 非线性有限元基础［M］. Beijing：Pe⁃
king University Press，2007（in Chinese）.

［11］ JEWELL D A，MCCORMICK M E. Hydroelastic in⁃
stability of a control surface：DTMB-TR-1442［R］.
Carderok，MD：David Taylor Model Basin，1961.

Fig.6 Calculation results of interval nonlinearity
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舵系统的颤振计算与分析

肖清 1，谢俊超 1，陈东阳 2

1 中国舰船研究设计中心，湖北 武汉 430064
2 南京理工大学 发射动力学研究所，江苏 南京 210094

摘 要：为了研究舵系统水弹性特性，基于二元水翼线性颤振模型对舵系统的颤振特性进行数值计算与分析，

计算结果与文献仿真数据较为吻合，验证了模型的有效性。利用该模型计算和分析频率比、重心、扭转刚度等

线性参数对舵系统颤振的影响规律。此外，结合两自由度二元水翼任意运动时域水动力计算方法，对舵系统非

线性颤振现象进行计算，获取传动间隙等因素对非线性颤振的影响规律。研究结果表明：减小质心到弹性轴的

距离、增加舵的扭转刚度，有利于提高颤振速度；间隙等非线性因素的存在可能导致系统出现极限循环振荡，激

发噪声，应加以控制。

关键词：舵系统；水弹性；颤振；间隙；非线性

维修工具使用的可达域计算及可视化方法

方雄兵 1，田正东 2，林锐 1，李涛涛 1

1 中国舰船研究设计中心，湖北 武汉 430064
2 海军装备部，北京 100841

摘 要：针对开展虚拟维修时相关仿真软件缺乏维修工具使用时的可达性分析功能之问题，提出一种可达域计

算方法以及可达域的三维可视化方法。首先，根据虚拟人手臂结构特点，计算出虚拟人手臂尺寸；在此基础上，

结合工具的外沿点位置，给出工具使用时的最远可达距离计算方法；基于该距离值及虚拟人手臂长度值计算可

达域几何体放大尺度，利用该尺度可以对工具使用时的可达域进行三维可视化。最后，结合 Jack仿真软件，

Tcl/Tk以及 Python语言，实现了维修工具使用可达性的分析功能。仿真实例表明：所实现的方法能满足工具使

用时的可达性分析，所提供的仿真报告自动生成功能有助于仿真人员编制报告。

关键词：维修工具；可达性分析；可达域；图形可视化；Jack仿真软件
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