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0 Introduction

Non-contact underwater explosions of ships are

complex nonlinear multi-physical processes, which

still cannot be understood in a full-system full-spa-

tiotemporal scale [1-4]. Three methods are mainly

used in studying underwater explosions: experimen-

tation, theoretical calculation, and numerical simula-

tion [1, 3, 5-6]. After World War II, western sea powers

conducted underwater explosion tests with real

ships[7-8] to directly observe explosion damage, eval-

uate the shock resistance of the ships and judge the

feasibility of installing candidate equipment on

ships. However, such real-ship-based tests have in-

herent defects, such as high costs, uncontrollable

processes, and damage to the marine ecological en-

vironment. In contrast, numerical simulation is safe,

environmentally friendly, low-cost, and process-
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controllable. However, modeling and simulation

(M&S) involves many uncertainties, and thus its

predictive ability is doubted by decision-makers.

Combining the advantages of both experimental

and numerical methods, uncertainty quantification

(UQ) can improve the credibility and reliability of

numerical models. In recent years, UQ, as a new

discipline, has attracted special attention from Euro-

pean and American scholars, and widely used in ma-

jor engineering fields such as nuclear energy[9-11],

safety [12-13], and aerospace [14-18]. Underwater explo-

sion tests with real ships started late in China, thus

resulting in limited available samples. Moreover,

foreign public data available for reference are also

scarce. As a result, research on UQ methods of

ships subjected to non-contact underwater explo-

sions in China has a broad application prospect.

However, research on the UQ of ships subjected to

non-contact underwater explosions has not been re-

ported so far. This is partially because M&S of un-

derwater explosions is complex and special, which

makes it impossible to directly use existing mature

methods.

Firstly, the M&S of underwater explosions in-

volves many uncertainties of different types. Specif-

ically, the process contains un-eliminable uncertain-

ties caused by inherent fluctuation of physical quan-

tities and technical errors in measurements. Be-

sides, considering the need for data fitting, it uses

uncertainties with no physical significance and em-

pirical parameters that cannot be experimentally cal-

ibrated. Secondly, the prerequisite for common UQ

methods at present is that random variables obey

the independent identical distribution (IID). Howev-

er, random variables of underwater explosions are

not fully obedient to IID. Thirdly, some uncertain

physical quantities are required to be strictly non-

negative. This makes the common Gaussian distri-

bution in probability statistics infeasible for direct

use. For example, on the assumption that mass is

normally distributed, non-physical cases with sam-

ples of negative mass will occur theoretically. Final-

ly, if parameters are assumed to be uniformly dis-

tributed, the boundedness of the parameters can be

easily satisfied. However, the high discontinuity of

probability density functions (PDFs) of uniform dis-

tribution makes it difficult to transform this distribu-

tion into a normal distribution. Therefore, the selec-

tion of a reasonable probability distribution that ac-

cords with statistical results is crucial for studying

the UQ of ships subjected to non-contact underwa-

ter explosions.

As to UQ methods, Monte Carlo (MC) method is

popular. However, it has slow convergence. An ef-

fective alternative to the MC method is the polyno-

mial chaos (PC) method, which is also a common

method for large-scale engineering calculation[19-23].

The involvement of many uncertainties in M&S of

ships subjected to non-contact underwater explo-

sion makes the multivariate PC method easily

trapped in a "curse of dimensionality". In short,

when the classical method with five quadrature

points is used to calculate an underwater explosion

system driven by 11-dimensional random variables,

it is necessary to run the program 511≈4.9×107

times. Moreover, the quintic polynomial needs to be

expanded (PC truncation length [24]) (11+5)!/(11!

5!)-1=4 367 times. This requires the program to be

run about 5×1011 times totally, which exceeds the

current computing power. By contrast, the method

of homogeneous Wiener chaos based on adaptive

basis functions improves the PC method and can al-

leviate the "curse of dimensionality". In this meth-

od, new random basis functions are obtained

through the isomorphic unitary transformation of

random basis functions. Thus, probabilities of physi-

cal quantities to be measured under the expansion

of the new random basis functions are concentrated

in a low-dimensional subspace.

In view of this, this paper focused on using ho-

mogeneous Wiener chaos based on adaptive basis

functions to deal with ships subjected to non-con-

tact underwater explosions with high-dimensional

uncertainty. First, we gave statistical information

such as expectations, standard deviations, and confi-

dence intervals of system outputs by designing a

simple test device. Then, we analyzed, quantified,

and evaluated the effects of uncertainties on ship

shock environments under non-contact underwater

explosions. Relevant results can improve the reli-

ability, credibility, and predictive ability of the

mathematical model, providing a basis for ship

structural design and on-board equipment installa-

tion.

1 Mathematical-physical model

The pressure of underwater explosions is related

to time and positions and cannot be easily mea-

sured. Therefore, the following empirical formula is

required for pressure determination[1-2, 25].

（1）
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where pm is peak pressure; t is time; r is slope dis-

tance; θ(r) is an attenuation constant. According to

Cole's formula [1], there are

（2）

（3）

（4）

where W is mass of TNT; f(x) is an empirical func-

tion; a, b, a1, b1, K1, K2, α, and β are all empirical

parameters, whose values are to be determined.

Shock resistance of ship-borne equipment for the

US Navy is a basis of ship structural design and on-

board equipment installation. As shown in Fig. 1,

an incident wave is decomposed into two parts at a

ship-water interface (fluid-structure interaction

boundary). One is a refracted wave that penetrates

the deck, and the other is a reflected wave that is re-

flected back into the water. Net pressure after reflec-

tion is a result of the algebraic operation of the inci-

dent and reflected waves.

Fig. 1 Force analysis of experimental setup

In the figure, pi(t) and ui(t) are the pressure and

displacement caused by an incident wave, respec-

tively; pf(t) and uf(t) are the pressure and displace-

ment caused by a reflected wave, respectively; pt(t)

is the pressure caused by a transmitted wave; x(t) is

the displacement in the outer normal direction of

the deck, and m is the areal density of the deck. Due

to the great size of the hull, the mass of the spring-

system test device is ignored in calculating areal

density. According to Newton's laws of motion, in

the outer normal direction of the deck, we have

（5）

（6）

（7）

According to the wave-front compatibility rela-

tionship [1, 25], there are

（8）

（9）

where ρ is the density of sea water,with ρ=1 027 kg/m3;

c is the local speed of sound, with c =1 493 m/s.

pi(t) is determined by Formula (1).

As shown in Fig. 1, the spring-system test device

on the deck produces simple harmonic vibration un-

der the action of the transmitted wave. It is assumed

that y(t) is the absolute displacement of the test de-

vice in the outer normal direction, and z(t) = y(t)-
x(t) is the relative displacement of the test device in

the outer normal direction. According to Newton's

second law, there is

（10）

where M is the mass of the test device, with the

spring mass being ignored; μ is a stiffness coeffi-

cient of spring; k is a damping coefficient. Accord-

ing to Formulas (5)-(10), we have

（11）

In the formula,

2β =
μ

M
,ω2 =

k

M
where ω is the natural frequency of the spring sys-

tem.

2 Uncertainty mining, quantifi-
cation, and propagation

2.1 Uncertainty sources and quantifica-
tion

Many uncertainties exist in the interaction be-

tween a non-contact underwater explosion and a

ship, which can be divided into two categories: One

refers to uncertain physical quantities, and the other

refers to uncertain empirical parameters (also

known as "fitted coefficients"). In Table 1, ξ1-ξ6 are

uncertain physical quantities that can be calibrated

experimentally. In Table 2, ξ7-ξ14 are uncertain em-

pirical parameters that cannot be calibrated experi-

mentally.

It is assumed that the uncertain physical quanti-

ties ξ1-ξ6 able to be calibrated experimentally obey

lognormal distribution. This assumption is made

based on statistical results of physical quantities. In

addition, lognormal distribution can strictly guaran-

tee non-negativity of physical quantities, and param-

eters of the lognormal distribution LN [τ, σ] can be

determined just by expectations and standard devia-
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tions of low orders (where τ is a logarithmic expec-

tation and σ is a logarithmic standard deviation).

Formula (12) gives calculation formulas of τ and σ.

（12）

where E(ξ) is the expectation of the random vari-

able ξ; std(ξ) is the standard deviation of ξ.

The explosion of a torpedo was taken as an exam-

ple. Due to the action of waves and undercurrents,

this kind of weapon is difficult to stay in a fixed po-

sition. Moreover, it explodes in motion, which

makes position determination more difficult. As a

result, the physical quantity ξ1 representing the

slope distance r is uncertain. It is supposed that ξ1

satisfies E(ξ1) = 10 m and std(ξ1) =0.2 m. Then,

from Formula (12), we have μξ1
=2.032，σξ1

=0.02.

Spherical TNT explosives used in this paper will

fluctuate randomly due to voids and gaps during

processing and mix with impurity particles. This

can result in uneven coagulation of particles, thus

making density distribution [9,10,19] of the explosives

random.

In addition, the physical quantity ξ2 representing

the mass W of TNT satisfies E(ξ2) =100 kg and

std(ξ2) =2 kg. By calculation based on Formula

(12), we have μξ2
=4.605，σξ2

=0.120. For the physi-

cal quantities ξ3 representing the areal density m of

the deck and ξ4 representing the mass M of the test

device, their measured values fluctuate due to un-

certainties in measurement. Their statistical charac-

teristics satisfy E(ξ3) =80 kg, std(ξ3) =6 kg, E(ξ4) =

1 800 kg, and std(ξ4) =200 kg. By calculation based

on Formula (12), we have μξ3
=4.379，σξ3

=0.078 9，

μξ4
=7.489 4，σξ4

=0.111, respectively. The random-

ness of the physical quantities ξ5 representing the

stiffness coefficient and ξ6 representing the damp-

ing coefficient is caused by inherent properties of

materials. Statistical characteristics of these quanti-

ties satisfy E(ξ5) = 1.8 × 107 N/m, std(ξ5) =1.8×105

N/m, E(ξ6) =52 000 Ns/m, and std(ξ6) = 200 Ns/m,

respectively. By calculation based on Formula (12),

we have μξ5
=16.705，σξ5

=0.010，μξ6
=10.859，σξ6

=

0.004.

As mentioned above, empirical parameters can-

not be calibrated experimentally. They are generally

defined within a certain range according to engi-

neering experience and assumed to be of a Beta

probability distribution. Although uniform distribu-

tion can also limit value ranges of parameters, it is

difficult to transform uniform distribution into a

normal distribution, due to the high discontinuity of

the density function. This is why the Beta probabili-

ty distribution is applied in this paper. Specifically,

the parameters χ and β in the Beta probability distri-

bution [χ, β, a, b] determine the curve shape of the

PDF. The parameters a and b give upper and lower

limits of random variables, and they are determined

based on the experience of engineers [1,3,7]. Fig. 2

shows PDF images of random variables (uncertain

physical quantities) to directly describe statistical

characteristics of uncertainties.

2.2 Rosenblatt transformation

The premise of homogeneous Wiener chaos with

quadratic adaptive basis functions is that random

variables must be standard normal ones satisfying

IID. However, from Section 2.1, this condition is

not met. In this paper, Rosenblatt transformation [26]

is used to transform correlated random variables in-

to a group of independent random variables obey-

ing standard normal distribution. The specific steps

are as follows: {X1, X2, … , Xn} is supposed to be a

list of random variables (where the subscript n re-

Symbol Uncertain physical quantity
Lognormal probability

distribution

Slope distance r/m

TNT mass W/kg

Areal density of deck m/(kg·m-2)

Mass of test device M/kg

Stiffness coefficient of spring

Damping coefficient k/（Ns·m-1）

Table 2 Uncertainty of a ship subjected to a non-contact

underwater explosion (empirical parameters)

Symbol
Uncertain empirical

parameter
Beta probability

distribution

Table 1 Uncertainty of a ship subjected to a non-contact

underwater explosion (physical quantities)

LIANG X, et al. The uncertainty quantification of ship shock environment subjected to non-contact
underwater explosion 69

downloaded from www.ship-research.com



CHINESE JOURNAL OF SHIP RESEARCH，VOL.15，NO.6，DEC. 2020

fers to the number of random variables). Let

where

represents conditional probability. Thus,

Then, {Y1, Y2, … ,Yn} obeys standard normal distri-

bution and is independent of each other.

2.3 Wiener chaos with quadratic adap-

tive basis functions

We set Ω as a sample space, as a σ -algebra in

Ω, P: → [0, 1] as a probability measure defined in

, the Gelfand triple (Ω, , P) as a complete proba-

bility space, and L2(Ω) as a square-integrable space

in Ω.

Given an inner product ,

with f, g ∈L2(Ω) (where θ is an integral element in

the sense of Lebesgue; f, g ∈L2(Ω) is a generalized

function), a Hilbert space can be formed.

Suppose that {ξi}d
i=1 indicates all random vari-

ables in Tables 1 and 2 (the superscript d refers to

dimension). After Rosenblatt transformation, it can

be transformed into a group of standard indepen-

dent Gaussian random variables. Displacement of

the spring system satisfies Formulas (1) - (11),

where ξ = [ξ1, ξ2, ..., ξd]T. From Tables 1 and 2, we

have d =14.

According to the Cameron-Martin theorem[21-23, 27],

there is

（13）

where α = (α1, α2, ..., αd) is a character set (Lebesue

space); , (N is a set of natural numbers);

(zα(t) is an expansion coeffi-

cient), and

（14）

In the above formulas, is a univariate Hermite

polynomial of the αi
th order; is a multivariate

Hermite polynomial.

H=Span{ξ1, ξ2, ..., ξd} is defined. H:n: is assumed

to be the space generated by d-dimensional nth-or-

der random Hermite polynomials. According to the

Wiener-Ito-Segal isomorphism formula [28], we have

L2(Ω) = ⊕nH:n:. In practical application, Formula

(13) needs to be truncated by limited times, namely,

（15）

where ，is the number of expan-

sions of an nth-order polynomial;

, and in the sense of mean square,

there is .

2.3.1 Basis transformation

A represents a unitary matrix in Rd (where R is

the Euclidian space). We define

（16）

where η is a linear transformation of uncertainties ξ

of underwater explosions, which is also a group of

bases of H mathematically, and H:n: can also be gen-

erated by η. The displacement of the spring system

is expressed as follows:

（17）

namely,

Fig. 2 PDF of random variables
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（18）

Therefore,

（19）

2.3.2 Model simplification based on the projec-

tion method

, and are set. Then, the pro-

jection of displacement of the spring device onto VI

is defined as follows:

（20）

In addition, the projection of onto VI can

be expressed as

（21）

Therefore,

（22）

Then, limiting z to VI yields .

2.3.3 Solving coefficients of Wiener chaos

based on quadratic adaptive basis func-

tions by non-intrusive method

A and are selected by the quadratic adaptive

method. Let

（23）

where z0 is the expectation of displacement z; ,

, among them, ei is a subset of Ip, and it

is a unit vector in which the ith element is not 1 and

the other elements are all zero; ξi and ξj are random

variables in Tables 1 and 2, respectively; δij is the

Kronecker's delta. The main part of Formula (23)

can be rewritten as

（24）

Where . Let

（25）

According to Formula (23), there is

（26）

where D=diag{d1, d2, ..., dd}. According to linear al-

gebra, A and D are the eigenvector and eigenvalue

matrix of S, respectively. Specifically, A is a unitary

matrix. Then, we have

（27）

where . Let

Then,

（28）

The error between zA(η) and is as follows:

（29）

The coefficients of Formula (24) are solved by

the non-intrusive method, namely,

（30）

where η(r) and wr are quadrature points and weights,

respectively. Specifically, η( r ) = η1
( r ) ,η2

( r ) ,⋯,ηd
( r ); s

is the number of quadrature points; satis-

fies Formulas (1)-(11), and ξ(r)= A-1η(r).

3 Analysis of UQ results

With the method described in Section 2, in the

case of p=2, Formula (24) is equivalent to Formula

(31).

（31）

Figs. 3-6 show the expectation, standard devia-

tion, and confidence interval of relative displace-

ment z(t) of the test device in the outer normal di-

rection, calculated according to the method in Sec-

tion 2.

Fig. 3 Expectation for displacement z in the spring system
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Fig. 4 Standard deviation for displacement z in the spring

system

Fig. 5 Confidence interval for displacement z in the spring

system

As can be seen from Fig. 3, after 100 ms, the ex-

pectation of z(t) gradually approaches zero, with

slight oscillations. This indicates that the deck re-

mains in an oscillatory state after being subjected to

underwater explosions.

As can be seen from Fig. 4, the standard devia-

tion of z(t) tends to be zero after 40 ms. This indi-

cates that the effects of underwater explosion shock

on the system are mainly concentrated in the initial

100 ms. After 100 ms, the effects of explosion

shock waves are negligible. This indicates that the

ship oscillates most obviously in the first 10 ms of

explosion shock, and resistance against explosion

shock at this time is crucial.

E|z(t)| reaches a maximum of 12.3 mm at 1.87 ms,

while std(z(t)) reaches a maximum of 2.38 mm at

3.86 ms. Therefore, the time for the standard devia-

tion to reach the peak is longer than that for the ex-

pectation to do so. This is mainly caused by inertia.

From the comparison between Fig. 3 and Fig. 4,

the standard deviation of z(t) oscillates more vio-

lently than the expectation does, and the standard-

deviation curve is of poor smoothness.

As can be seen from Fig. 5, the confidence inter-

val of z(t) widens quickly within 10 ms and reaches

Fig. 6 PDF of displacement z in spring system at different time
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a maximum width at 8.65 ms. Then, it gradually

narrows and tends to be zero. This indicates that un-

certainties are high and difficult to be predicted at

the initial time, but it is precisely the most impor-

tant moment for ship protection. Moreover, from

Fig. 5, prediction after 40 ms is accurate. Although

the explosion shock wave still oscillates at this

time, it gradually disappears.

Fig. 6 shows the PDF curves of z(t) with six se-

lected moments as observation points to obtain

more accurate oscillations of equipment on the

deck. The PDF curves are roughly bell-shaped,

which is consistent with cognition. Moreover, other

statistical characteristics of z(t) at these moments

can also be obtained according to the above results,

such as peaks and skewness.

As can also be seen from Fig. 6, with the passage

of time, the variation range of z(t) narrows and the

PDF peak increases, while the skewness appears al-

ternately. In conclusion, with the method in this pa-

per, it is easier to predict long-time dynamic behav-

ior than initial dynamic behavior.

4 Conclusions

By designing a suitable spring-system test de-

vice, this paper studied the effects of uncertainties

in underwater explosions of medium and low inten-

sity on the test device on deck through probability

statistics. In addition, it gave expectations, standard

deviations, confidence intervals, and PDFs of dis-

placement of the test device by using homogeneous

Wiener chaos based on adaptive basis functions.

The main conclusions are as follows:

1) The deck subjected to underwater explosion

shock remains in an oscillatory state. The expecta-

tion and standard deviation of the spring-system

test device gradually approach zero after reaching

maximum values, and the confidence interval gradu-

ally narrows. The oscillation of the standard devia-

tion is much greater than that of the expectation,

and the standard deviation lags behind the expecta-

tion in reaching the maximum. Therefore, in the

case of a ship attacked by non-contact underwater

weapons, its damage in the initial stage of explo-

sion shock is the greatest and difficult to be predict-

ed. Thus, ship protection at this time is crucial.

2) Homogeneous Wiener chaos based on adap-

tive basis functions alleviates the "curse of dimen-

sionality" to some extent. Specifically, it constructs

isomorphic unitary transformation of random basis

functions, selects an appropriate projection space,

and uses the structure of system response in low-di-

mensional space to approach that in the whole sys-

tem. Thus, computational efficiency is improved

and computational costs are saved. This method is

feasible. For example, for the expansion of a quintic

polynomial, the truncation length in the case of stan-

dard multivariate PC is (14+5)!/14!5!-1 = 46 512-
1 = 46 511, while that in the case of homogeneous

Wiener chaos based on adaptive basis functions is

(1+5)!/1!5!-1 =5, with an efficiency of 46 511/5 ≈
104.

The method in this paper can be used to guide

ship designers to predict oscillations of objects on

deck and judge the damage impact of torpedoes for

providing ship personnel with suggestions about

protective measures. Besides, it can give ship rein-

forcement standards and determine the feasibility of

on-board equipment installation. Homogeneous

Wiener chaos based on adaptive basis functions can

also be extended to the study of other impact re-

sponses of ships.

In conclusion, UQ research of ships subjected to

non-contact underwater explosions is a systematic

project, which requires the cooperation of experts in

oceanology, engineering, mathematics, and physics.

Only preliminary results are given in this paper. The

following issues will be considered in future work.

1) This paper lacks a comparison between experi-

mental and numerical results, without obtaining real

experimental data yet. Therefore, in the next step,

we plan to work with experts in this field to study

propagation and quantification of uncertainties in

underwater explosion tests and compare experimen-

tal results with numerical ones to confirm model pa-

rameters.

2) Effects of model uncertainties are not consid-

ered in this paper. In fact, with explosives of differ-

ent types, peak pressure, attenuation constants, and

even fitting functions will be different. Even for the

same type of explosives, different empirical func-

tions may be employed for representation. There-

fore, studying the effects of different empirical func-

tions on system outputs, that is, quantification of

model form uncertainties will always be an impor-

tant topic in UQ research.
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非接触水下爆炸下舰船冲击环境的
不确定度量化

梁霄 1，陈江涛 2，王瑞利*3，胡星志 2

1 山东科技大学 数学学院，山东 青岛 266590

2 中国空气动力研究与发展中心，四川 绵阳 621000

3 北京应用物理与计算数学研究所，北京 100094

摘 要：［目的目的］为挖掘和量化舰船非接触水下爆炸建模与模拟中的不确定性因素，开展高维随机变量对系统

输出结果的影响研究。［方法方法］根据变量统计特征和工程经验，使用对数正态分布描述物理量的不确定度，使

用 Beta 分布描述唯象参数的不确定度，并使用 Rosenblatt 变换将不同类型的相关随机变量组转化为服从独立

同分布的正态分布变量组。此外，考虑到模型的复杂性且不确定性因素众多，使用基于二次自适应基函数的齐

次 Wiener 混沌方法处理不确定度的传播，以提高计算效率。以甲板上弹簧系统试验装置为例，应用所提方法

研究试验装置的冲击响应量的期望值、标准差、置信区间和概率密度函数。［结果结果］结果显示，舰船遭受水下爆

炸冲击后，甲板一直处于振荡状，标准差的振荡相比期望值更大。［结论结论］研究结果可为非接触水下爆炸冲击

影响以及评估舰船抗冲击性能提供依据。

关键词：自适应基函数；不确定度量化；非接触水下爆炸；酉变换；Rosenblatt 变换；齐次 Wiener 混沌

短路冲击作用下电力推进装置
扭振计算与分析

李增光*1，赵辉 1，周宁 2

1 中国舰船研究设计中心，上海 201108

2 中国大洋矿产资源研究开发协会，北京 100045

摘 要：［目的目的］对于电力推进装置，推进电机短路故障时的瞬态扭矩激励峰值很大，对推进系统的运行安全

影响较大。为此，提出一种短路故障工况下推进装置扭振计算方法。［方法方法］根据船舶推进装置扭振分析理

论，建立系统的时域扭振计算模型，给出短路时推进电机瞬态冲击扭矩作用下系统的响应计算方法。基于此，

建立某电力推进装置的计算模型，对其扭振固有特性及 3 极和 2 极短路故障时的系统扭振响应进行计算与

分析。［结结果果］ 结果表明，系统动态特性对短路冲击扭矩的传递具有重要影响，其中，高于系统第 1 阶弹性模

态频率的扭矩成分在传递至推进器端时的衰减很大，推进器处的动态扭矩以第 1 阶弹性模态频率成分为主，

而在推进电机与传动轴−推进器之间设置高弹性联轴器，能大幅衰减冲击扭矩引起的动态响应；瞬态扭矩响

应最大值随着电机转速的增加而增加，交变扭矩可达到数倍平均扭矩，由此引起齿轮传动装置的齿面敲击，且

传动部件瞬时扭转应力较大。［结论结论］提出的时间域扭振模型及方法可用于电力推进装置在短路瞬态冲击作

用下的响应计算分析，在设计阶段对短路冲击作用下的扭振响应进行校核非常必要，可提高电力推进装置运

行的安全性。

关键词：电力推进装置；扭转振动；短路故障；冲击
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